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The use of the relat ive intensity method for measurement  of the rotat ional  tempera ture  of 
ni t rogen in a ra re f ied  air  flow by means of g low-discharge excitation of luminescence is de- 
scr ibed.  Special features  of measurement  of the rotat ional  t empera ture  at low static p r e s -  
sure  of the gas in the flow are noted. Prof i les  of the rotat ional  t empera ture  along the stagna- 
tion line in the case  of t r ansve r se  flow over  a cylinder are  obtained. The dependence of the 
measurement  e r r o r  on the t empera tu re  is discussed.  

Measurement  of the gas p a r a m e t e r s  in hypersonic low-density flows involves considerable difficulties. 
One of the most  difficult p a r a m e t e r s  to determine is the static tempera ture .  In recent  yea r s  experiments  
have begun to use e lec t ron-beam excitation of the luminescence of nitrogen to measure  the rotat ional  t e m -  
p e r a ~ r e  of nitrogen in hypersonic flows by the relat ive intensity method [1]. In some conditions the equality 
of the rotat ional  and t ranslat ional  tempera ture  is assumed.  Available published data on the distribution of 
rotat ional  tempera ture  re la te  mainly to freely expanding jets [2, 3]. 

Below we give the resul ts  of measurement  of the rotat ional  tempera ture  in a fu l ly-formed hypersonic 
ra re f ied  flow and near  a model. The luminescence in the flow was excited by a glow discharge.  Dried air  
was used as the working gas.  

1. The rotat ional  t empera ture  of nitrogen in the case of e lec t ron-beam excitation is usually de te r -  
mined f rom the distr ibution of luminescence intensity in the R branch of the (0, 0) I band of the negative 
sys tem [1-4]. The rotational tempera ture  T r is determined by using the relat ionship 

lg Ig" _ BK" (K' ~- i) (1.1) 
(K' ~- K" ~- l) Gv 4 T r 

Fig. 1 
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Figure 1 shows the spec t rum of the air  flow in front of a t r ansve r se  cylinder.  

Here K' and K" = K ' - I  are  the quantum numbers  of the upper and lower 
rotat ional  levels between which the radiative transi t ion occurs ,  I k, is the r e -  
lative intensity of the rotat ional  line, v is the line frequency,  B = 125~ at 
t empera tu res  ~ 800~ andthe quantity G, which depends on K' and Tr,  was in- 
t roduced and tabulated by Muntz [1]. This relat ionship is suitable for de te r -  
mination of T r in the negative-glow region of a glow discharge.  The cathode 
for the production of a glow discharge in the working chamber  of a low-den- 
sity wind tunnel was a hypersonic nozzle insulated f rom the walls of the work-  
ing chamber;  the anode was placed in the working chamber  outside the field 
of vision. The effect of the discharge on the gas flow pa rame te r s  can be ne-  
glected [5]. The luminescence is concentrated mainly in the central  par t  of 
the flow [6]. 

The luminescence spect rum was photographed on KN-4 film by means 
of an ISle-51 glass  spect rograph with a focal length of 270 mm. The lumines-  
cence was projec ted  onto the spect rograph slit with approximately sevenfold 
reduction.  When the discharge cur rent  was a few tens of mA the required  ex-  
posure  was 1-1.5 h, 

This spect rum was ob- 
tained by positioning the spect rograph so that its slit  was oriented along the stagnation line. The p a r a m -  
e te rs  of the hypersonic  flow were as follows: Mach number M~o = 5, stagnation t empera tu re  T o = 290~ 
Reynolds number r e f e r r e d  to radius of model Roo = 156. The bulk of the luminescence is concentrated in 
bands I of the negative sys tem of the molecular  ni trogen ion. Bands II of the posit ive sys tem become ap-  
preciable  in the spect rum with increase  in exposure,  but their  intensity can be neglected. The luminescence 
spectrum,  shown in Fig. 1, consis ts  of two fa i r ly  distinct regions .  Region 1 cor responds  to the gas s tagna-  
tion zone at the model, region 2 cor responds  to the zone ups t ream of the model. The distribution of inten- 
sity between the rotat ional  lines of the R branch in bands I of the negative sys tem in regions 1 and 2 differs 
significantly. In region 2 the luminescence intensity is concentrated at the s ta r t  of the R branch, i.e., in 
lines with low values of K' ,  which is a consequence of the low f r e e - s t r e a m  gas tempera ture .  On t ransi t ion 
to region 1, to the gas stagnation zone, the t empera tu re  increases ,  and the intensity of lines with high K ~ 
increases .  

2. The rotat ional  t empera tu re  was determined f rom the gradient of the relat ionship 

IK" ) 
A = A(• A • lg  2g ,  v v  ~ , x = K '  (K'  + t)  (2.1) 

In the case of Boltzmann distribution of molecules over the rotat ional  energy levels this graph is a 
s traight  line; Fig. 2 shows typical graphs for three experiments  in the f r e e - s t r e a m  zone. We give the flow 
p a r a m e t e r s  and the obtained values of the rotat ional  t empera tu re  for experiments  1, 2, and 3 shown in the 
figure 

Moo To, ~ R~ Tom ~ Tr. ~ 

1 7 .6  29t 495 2 3 ~ 2  30-+7 
2 4 29t 40 70--+3 75--+8 
3 5 673 46 i12-+6 t i 5 •  

Here Too is the static t empera tu re  of the gas in the flow. The Reynolds number  for 1 cm was ca lcu-  
lated. 

The figure shows that with t empera tu re  reduction the intensity is redis t r ibuted in favor of lines with 
lower K',  and the gradient  of the graph increases .  At static t empera tu re  T~ = l12~ all the experimental  
points lie sa t i s fac tor i ly  on a s traight  line, and the measured  value of T r agrees  within the e r r o r  of m e a s u r e -  
ment with Too. With reduct ion in Too the points corresponding to high values of K' begin to deviate upwards 
f rom a s t ra ight  line, and T r is above the value of Too calculated on the basis of Pitot tube readings.  A s im-  
ilar resul t  is obtained when the luminescence of ni trogen is excited by a focused electron beam [2, 3]. 

The possible cause of nonequilibrium population of the rotat ional  N~ levels at low tempera ture  is now 
being investigated. In par t icu lar ,  the excess  of T r over Too in the s t ream has been attributed to rotat ional  
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r e l axa t ion  [3, 7]. In s e v e r a l  p a p e r s  [10-12] the inadequacy of the dipole t r ans i t i on  model  in this  case  has 
been pointed out, and a t t empt s  to take the effect  of gas densi ty  into account have been made [4, 10, 12]. The 
de te rmina t ion  of T r f rom the g rad ien t  of the l inea r  p a r t  of the g raph  of A = A(n) g ives  a value which d i f fers  
s igni f icant ly  f rom the t r a n s l a t i o n a l  t e m p e r a t u r e  (by 15-20% or  more) a t  20-30~ or  lower [2]. 

3. An inves t iga t ion  of the gas  t e m p e r a t u r e  d is t r ibu t ion  nea r  models  in a r a r e f i e d  flow is of g r e a t  
i n t e r e s t .  We inves t iga ted  the d i s t r ibu t ion  of ro ta t iona l  t e m p e r a t u r e  along the s tagnat ion line in the case  of 
flow over  a t r a n s v e r s e  cy l inder .  The obtained p r o f i l e s  a r e  shown in Fig .  3. 

The d i s tance  x u p s t r e a m  f rom the model  wal l  is  e x p r e s s e d  r e l a t i v e  to R - the r ad ius  of the model  
(Fig.  3a) - and to X~ - the mean f ree  path of the molecule  in the f ree  s t r e a m  (Fig.  3b). The local  ro ta t iona l  
temperature T 2 is  compared  with the f r e e - s t r e a m  r o t a t i o n a l  t e m p e r a t u r e  T 1. 

The expe r imen t  was conducted with Moo = 4 and T O = 290~ 

The number  R~o, r e f e r r e d  to the r ad ius  of the model ,  was a l t e r e d  by using models  of d i f ferent  r a d i i  
and was 156, 78, and 39 (curves  1, 2, 3, r e s p e c t i v e l y ,  in Fig .  3). The t e m p e r a t u r e  T r was m e a s u r e d  at  0.7-  
mm in t e rva l s  along the x axis .  It is  apparen t  that  the p ro f i l e s  a r e  d i s t inc t ly  s m e a r e d ,  and the degree  of 
s m e a r i n g  i n c r e a s e s  with reduc t ion  of R~o. F o r  the flow r e g i m e  cor respond ing  to R~o = 156 the t e m p e r a t u r e  
drop on the shock approaches  the continual  Hugoniot-Rankine value T2/T 1 ~ 4. With reduct ion  in R~ the 
t e m p e r a t u r e  drop d e c r e a s e s  and does not  a t ta in  the continual  value.  We can a s sume  that  a t  R~o = 156 the 
shock wave and the boundary l aye r  a r e  s e p a r a t e d  by a r eg ion  of inv isc id  flow. The shock standoff d i s tance ,  
m e a s u r e d  as  the d i s tance  f rom the midpoint  of the t e m p e r a t u r e  prof i le  to the model  wal l ,  is  c lose  to the 

continual  va lue  0.51 R in this  case .  

The m e a s u r e d  ro t a t iona l  t e m p e r a t u r e  p ro f i l e s  for  t r a n s v e r s e  flow over  a cy l inder  ag ree  with the 
p r o f i l e s  obtained by means  of a f r e e - m o l e c u l a r  t e m p e r a t u r e  p robe  [8], which probab ly  indica tes  the equal i ty  
of the ro t a t iona l  and t r an s l a t i ona l  t e m p e r a t u r e s  in the shock zone in the inves t iga ted  flow r e g i m e s .  

4, Fo r  the flow r e g i m e  cor respond ing  to R~ = 156 the r a t i o  of the mean f r ee  path X~ to the th ickness  
5 T of the t e m p e r a t u r e  jump is 0.16. This value ag ree s  quite wel l  with the expe r imen ta l  data of [8] and with 
the t h e o r e t i c a l  r e s u l t  (X~/5 T = 0 .19)  obtained f rom the b imodal  Mot t -Smith  theory  for  Maxwell ian molecules  
[9]. 

5. We cons ider  the a c c u r a c y  of ro ta t iona l  t e m p e r a t u r e  m e a s u r e m e n t  at low T r .  The e xp r e s s ion  for  
the r e l a t i v e  e r r o r  of m e a s u r e m e n t  of T r can be wr i t t en  fo rma l ly  as:  

AT r T r [[ AIK  I" ~g) / AIK 2' ~ / ACn \~ r AG$ "~]']~: (4.1) 

Here  the subsc r i p t s  1 and 2 co r r e spond  to the e x t r e m e  points through which a s t r a igh t  line on a graph 
s i m i l a r  to that  shown in Fig.  2 p a s s e s .  We as sume  for  s imp l i c i t y  that  the s t r a i g h t  line p a s s e s  through the 
two e x t r e m e  points ,  although in fact  a se t  of points  is used to obtain the l ine.  It is  apparen t  that  TreAT r is  
d i r e c t l y  p ropo r t i ona l  to T r ,  i .e . ,  on reduc t ion  of T r the r e l a t i v e  e r r o r  wi l l  d e c r e a s e .  In fact ,  the r e v e r s e  
occurs  at low t e m p e r a t u r e s .  As was mentioned above, with reduct ion  of Tr  the in tens i ty  of the luminescence  
is r e d i s t r i b u t e d  in favor  of l ines  with low K'  va lues ,  with the r e s u l t  that  the e r r o r  in de te rmina t ion  of the 
in tens i t i e s  of l ines  with low K' i n c r e a s e s  s ignif icant ly .  In addit ion,  on the graph of A = A(~) the points  c o r -  
responding to l a rge  K' devia te  f rom a s t r a igh t  line. At T r = 30~ the e x t r e m e  point  s t i l l  lying on the s t ra igh t  
line c o r r e s p o n d s  to K' = 3 (Fig.  2). Hence, at low t e m p e r a t u r e s  T r the t e r m  [K 2'(K2'+ 1)--KI'(KI'+ 1)] in 
the denominator  of (4.1) p lays  a much g r e a t e r  p a r t  in the de te rmina t ion  of the r e l a t i v e  e r r o r .  Fo r  ins tance,  
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at T r = 300~ lines f rom K' up to 21 are  used for plotting the graph, and the value of this t e rm is 460, 
whereas  at T r = 30~ lines f rom K' only up to 10 are  used. Hence, the factor  

Tr 
B [Kz' (K..' + i )  - -  K / ( K I '  ~- i)] 

is 0.52 and 2.4. Thus, with the same e r r o r  in measurement  of the line intensity I~l, AIK, and in the choice 

of G the total e r r o r  in the determination of T r is not reduced by a factor  of 10, but is increased by a factor  
of a lmost  5. 

It should be noted that at low tempera tu res  the value of the cor rec t ion  G becomes much grea te r .  
Henee, when the straight  line is drawn through a small  number of experimental  points the e r r o r  in the choice 
of G can lead to a large e r r o r  in the determinat ion of T r .  It is obvious also that the reduction per  se of the 
number of experimental  points through which the straight  line is drawn leads to an increase  in the e r r o r  
in the determination of the gradient  of this line, i.e., to an increase in the e r r o r  in the determination of T r .  

Thus, at room tempera tu re  the e r r o r  in the determination of the rotat ional  t empera tu re  f rom the in- 
tensity distribution in the R-branch  of the (0, 0) band is ~ 3% [1, 3], whereas at low tempera tures  it can 
reach  severa l  tens per  cent. 

LITERATUPE CITED 

1. E . P .  Munts, "Static t empera ture  measurements  in a flowing gas ,"  Phys. Fluids, 5, No. 1 (1962). 
2. E. Robben and L. Talbot, "Measurements  of rotat ional  tempera ture  in a low-density wind tunnel," 

Phys.  Fluids, 9, No. 4 (1966). 
3. P .V.  Mar rone , "Tempera tu re  and density measurement  in free jets and shock waves,"  Phys. Fluids, 

10, No. 3 (1967). 
4. B . L .  Maguire, "Density effects on rotational t empera ture  measurements  in nitrogen using the e lec-  

t ron-beam excitation technique," Raref ied  Gas Dynamics,  Vol. 2, Academic P re s s  (1969). 
5. V . M .  Kalugin, "The highly sensit ive glow-discharge technique for visualization of hypersonic flows 

of ra re f ied  gas ,"  Zh. Prikl .  Mekhan. i Tekh. Fiz. ,  No. 4 (1966). 
6. V . M .  Kalugin, "Measurement  of gas density in a hypersonic ra re f ied  flow by means of the lumines-  

cence of a glow discharge ,"  Zh. Prikl .  Mekhan. i Tekh. Fiz. ,  No. 2 (1969). 
7. D. Ti rumalesa ,  "Rotational relaxation in hypersonic low-density flows, AIAA J., 6, No. 4,765 (1968). 
8. J . E .  Broadwell and H. Rungaldier,  "Structure of the shock layer  on cylinders in ra ref ied  gas flow," 

Raref ied  Gas Dynamics,  Vol. 2, Academic P r e s s  (1967). 
9. C. Muckenfuss, "Some aspects  of shock s t ructure  according to the bimodal model," Phys.  Fluids, 5, 

No. 11 (1962). 
10. H. Ashkenas,  "Rotational t empera tu re  measurements  in e lec t ron-beam excited nitrogen," Phys.  Fluids, 

10, No. 12 (1967). 
11. R . B .  Smith, "N2-first negative band broadening due to e lec t ron-beam excitation," Raref ied Gas Dy- 

namics,  Vol. 2, Academic P r e s s  (1969). 
12. D. Lil l icrap and J.  Harvey, "Elec t ron-beam rotat ional  tempera ture  measurements  including the effect 

of secondary e lec t rons ,"  AIAA J., 7, No. 5, 980 (1969). 

305 


